#include <NeuralNetwork.H>
|
Eigen::Matrix< TYPE, Eigen::Dynamic, 1 > | output |
| The output from this layer. More...
|
|
Eigen::Matrix< TYPE, Eigen::Dynamic, Eigen::Dynamic > | weights |
| The neural weights for this layer. More...
|
|
Eigen::Matrix< TYPE, Eigen::Dynamic, 1 > | bias |
| The biases for this layer. More...
|
|
template<typename TYPE>
class SigmoidLayer< TYPE >
Implements a neural layer with a sigmoid activation function
- Template Parameters
-
TYPE | the precision of the data to use, e.g. float, double |
- Examples:
- NeuralNetworkFnTest.C, and NeuralNetworkTest.C.
Definition at line 93 of file NeuralNetwork.H.
◆ SigmoidLayer() [1/2]
Generate a neural layer of particular size
- Parameters
-
inputSize | The number of the inputs |
outputSize | The number of outputs |
Definition at line 99 of file NeuralNetwork.H.
◆ SigmoidLayer() [2/2]
template<typename TYPE >
template<typename Derived >
SigmoidLayer< TYPE >::SigmoidLayer |
( |
const Eigen::MatrixBase< Derived > & |
weightsIn, |
|
|
const Eigen::MatrixBase< Derived > & |
biasIn |
|
) |
| |
|
inline |
Generate a neural layer of particular size providing the weights
- Parameters
-
weightsIn | The weights to set |
biasIn | The biases to set |
- Template Parameters
-
Derived | is used by Eigen's Curiously recurring template pattern (CRTP) |
Definition at line 108 of file NeuralNetwork.H.
◆ ~SigmoidLayer()
◆ activate()
template<typename TYPE >
virtual Eigen::Matrix<TYPE, Eigen::Dynamic, 1>& SigmoidLayer< TYPE >::activate |
( |
const Eigen::Matrix< TYPE, Eigen::Dynamic, 1 > & |
input | ) |
|
|
inlinevirtual |
The sigmoidal activation function Evaluate the neural layer using the sigmoid as the activation function
- Parameters
-
input | The input to this layer |
- Returns
- The result of the layer after processing the input
Reimplemented from NeuralLayer< TYPE >.
Definition at line 119 of file NeuralNetwork.H.
The documentation for this class was generated from the following file: